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Abstract

Malware classification can be a challenge considering the great amount of variety and increasing
emergence of malware, as well as, available classification methods. For this reason, it is not
unusual for a file to be considered a different type of malicious file by different classifiers. In
fact, an assignment made by a single classifier might change through time, as a consequence
of methods refinements or new discoveries. When using multiple independent classifiers, past
classifications of a certain file might help on deciding on which one to trust. This dissertation aims
at finding a way to facilitate this analysis by collecting historical data on files that already have
assigned their final and last classification, and determine which machine learning algorithm can
better predict a new file classification given this very same data. Besides the historical data, other
characteristics shall be taken into account like: source of the file, filetype and filesize. The machine
learning algorithms we have used are: C4.5, Random Forests, Multi-Layer Perceptron (MLP) and
Long short-term memory (LSTM). It was possible with this approach to find an alternative way in
finding the correct malware classification of a file, given a multiple number of classifiers, taking
into account its classification history.
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Resumo

A classificação de malware pode ser um desafio considerando o seu número actual e crescimento,
bem como, os seus métodos de classificação. Por esta razão, é comum para um ficheiro ter difer-
entes classificações perante múltiplos classificadores. Para além disso, uma atribuição feita por
apenas um classificador pode mudar ao longo do tempo, consequência do melhoramente dos
métodos de classificação ou de novas descobertas. Quando em posse de diferentes e indepen-
dentes classificadores, classificações passadas de um determinado ficheiro podem influenciar em
quem confiar. Esta dissertação tem como objectivo encontrar uma forma de ajudar esta análise
juntando dados históricos de ficheiros cuja classificação é final, e determinar qual o algoritmo de
machine learning consegue prever melhor a classificação de um novo ficheiro. Para além dos da-
dos históricos, outras características serão tidas em conta: a origem, tipo e tamanho do ficheiro.
Os algoritmos de machine learning utilizados são: C4.5, Random Forests, Multi-Layer Perceptron
(MLP) e Long short-term memory (LSTM). Espera-se que esta abordagem ofereça um método
alternativo ou ajude na atribuição correcta de malware de um ficheiro, recorrendo a múltiplos
classificadores e ao histórico de classificações.
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If we knew exactly the laws of nature and the situation of the universe at the initial moment,
we could predict exactly the situation of the same universe at a succeeding moment.

Henri Poincaré
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Chapter 1

Introduction

1.1 Context

Today’s world is witnessing a significant growth of technology. Both people and companies take

advantage of the latest advancements to their own benefit. A great amount of those advancements

contribute to the expansion of the cyberspace. Cyberspace can be defined as:

“the complex environment resulting from the interaction of people, software and ser-

vices on the Internet by means of technology devices and networks connected to it,

which does not exist in any physical form.“ [Ltd12]

In an environment where everything is connected, it is mandatory to preserve confidentiality,

integrity and availability for both systems and sensitive information. [Ltd12] Considering this,

security is an evolving field of the utmost importance although it has been continually neglected.

[Hum15]

Machine learning is another evolving field with great relevance. It aids in the development of

model creations for businesses and recognize important patterns, either to understand the environ-

ment, or to predict the future.

This dissertation, offered by the company IKARUS Security Software, aims to unite both

these fields, machine learning and security, in a way where detection of threats is more easily

accomplished.

1.2 Motivation and Goals

The company IKARUS Security Software, located in Blechturmgasse 11 1050 Vienna, Austria,

works on finding new security solutions for both private and public clients.

Motivated to improve the detection of threats in systems, it is the company and dissertation’s

goal to research and implement a system capable of deciding if a file is a threat or not, considering

multiple classifications given by a set of classifiers over time.

Four machine learning methods were considered to analyse the data: C4.5, Random Forest,

Multi-Layer Perceptron and Long short term memory.
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Introduction

1. Is it possible to predict a classification based on past variations of classifications across

different classifiers?

2. Is it possible to improve certain algorithms by searching for optimal parameters?

3. What algorithm can best predict the classification?

1.3 Structure

This dissertation is divided in the following chapters.

In chapter 2 a literature review over the main topics related to the development of this thesis

will be shown.

In chapter 3 the methodology and planning is presented.

In chapter 4 it’s possible to read about the implementations of the most relevant methodologies.

In chapter 5 the results are demonstrated and discussed.

In chapter 6 a conclusion over the whole work is presented, as well as, future work.
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Chapter 2

Literature Review

In Literature Review, an overview over the main topics related to the development of this thesis

will be shown. Apart from giving a foundation on the subject, state of the art work will also be

presented, which served as inspiration for this work. This chapter is structured in the following

way:

• Machine Learning and Time series: an introduction on what these are and why are they

important in the context of this thesis.

• Neural Networks, Decision Trees and Genetic Algorithms: an explanation of these sub-

jects, as well, specific algorithms that were used in the project.

2.1 Machine Learning

Today’s world is witnessing an increase in data traffic, with no sign of stopping[Cis16]. In 2013,

the International Data Corporation predicted that 80% of customer data would be wasted[IDC16].And

this is where machine learning can help with the ability to discover patterns in all this amount of

data[BM01].

Regarding machine learning, [Mit06] says:

[...] we say that a machine learns with respect to a particular task T, performance met-

ric P, and type of experience E, if the system reliably improves its performance P at

task T, following experience E. Depending on how we specify T, P, and E, the learn-

ing task might also be called by names such as data mining, autonomous discovery,

database updating, programming by example, etc.

[LS95] also states:

Machine learning is the study of computational methods for improving performance

by mechanizing the acquisition of knowledge from experience.

Machine learning tasks can be separated into three different classes[RN09]:

3
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• Supervised learning: the machine has at its disposal both the inputs and outputs to learn.

• Unsupervised learning: the learning process is executed without any correct output avail-

able.

• Reinforcement learning: given a certain input and consequent action, the latter is evaluated

without the correct action being disclosed.

2.2 Time series

A time series is a discrete or continuous sequence of discrete time points spaced at uniform time

intervals. It can be used in different fields such as pattern recognition, finance, statistics, weather

casting or many others[Cha04].

A time series analysis of a sequence of data points over time tells us what causal effects

one or more variables change might have on other variables over time. Time series can be both

continuous, when observations are made continuously on time, and discrete when observations are

taken at specific time and at most cases equally spaced. Time series forecasting uses a model to

predict future values based on previously observed values.

2.3 Neural Networks

Machine learning algorithms based on neural networks have been gaining popularity in such a way,

that big companies such as Google1 and Amazon2 are developing their own libraries. These algo-

rithms have shown great success when faced with problems regarding speech recognition[AAB+15],

image recognition[SNY15] or recommendation systems[SNY15]. A neural network, to say in the

words of Dr. Robert Hecht-Nielson[Cau89], is "a computing system made up of a number of sim-

ple, highly interconnected processing elements, which process information by their dynamic state

response to external inputs.". These networks are modelled after the architecture of animal brains,

where neurons transmit and process chemical and electrical signals to other neurons[Bel14].

The Figure 2.2 represents the mathematical model of a single neuron as shown in Figure 2.1.

The biological neuron receives input signals from its dendrites and outputs signals from its axons

onto other neuron’s dendrites through synapses[Kar16a].

The basic computational model works in a similar fashion: it receives several inputs (x0,x1,x2),

multiplies each one of them by a certain weight3 (w0,w1,w2)adding an offset (bias) and sums

all these. If the result is above a certain threshold, it fires the neuron through an activation

function[Nie16][Kar16a]. In the Figure 2.3, we can see an example of a neural network archi-

tecture, Multi-Layer Perceptron (MLP). It is a feedforward neural network which consists of an

input layer, output layer and one or more hidden layers of nodes (neurons). The goal is to find a

1https://www.tensorflow.org/
2https://github.com/amznlabs/amazon-dsstne
3Weights quantify an input influence

4



Literature Review

Figure 2.1: Neuron[Kar16a]

Figure 2.2: Model of a neuron[Kar16a]

Figure 2.3: Neural-network architecture example[Nie16]
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combination of weights and biases so that the output approximates the real output function for all

the training inputs. In order to quantify how close the network is to find the optimal aproximate

function, a loss functions needs to be defined. One example is the Cross-entropy[NBJ02] which

was the one used in this dissertation. The way a neural network usually learns is through a method

called Backpropagation, which consists in computing the gradient of a loss function with respect

to any weight or bias in the network[RHW88]. It shows how quickly the changes in the weights

and biases influence the loss. Along with backpropagation an optimization function needs to be

used to update the weights. The optimization function used in this dissertation is the Stochastic

gradient descent (SGD)[Bot12].

2.3.1 Activation Functions

• Sigmoid The sigmoid function has the form:

σ(x)≡ 1
1+ e−x (2.1)

It perfoms an operation over a real-valued number and returns a number into range between

0 and 1. Large negative numbers become 0, while large positive numbers become 1. This

function has been used for a long time, because it gives a clear interpretation of the firing

rate of a neuron, but has suffered a decline in use because of its easiness to saturate and

kill gradients. Another undesirable feature of this function, although not as severe, is its

non-zero centered outputs, which result in a slower convergence.

• Tanh The sigmoid function has the form:

tanh(x) = 2σ(2x)−1 (2.2)

It perfoms an operation over a real-valued number and returns a number into range between

1 and -1. Although saturation also happens, the zero centered values give this function an

edge over the sigmoid because of its convergence.

2.3.2 Recurrent Neural-Networks

Recurrent neural networks are a feedforward neural network architecture with the capability of

processing a sequence of values[BC16]. This is possible by including and connecting edges that

span adjacent sequence or time steps. In a specific step t, nodes get input both from the current

data point x(t), as well as, from the hidden node values on the previous step t-1 [Lip15]. These

interactions are represented in the Figure 2.9.

If we take a look at the Figure 2.9, we can see the similarities between RNN and feedforward

neural networks, and so, these networks can take advantage of backpropagation, specifically one

called backpropagation through time (BPTT), which computes the gradient across the many time

steps[Wer90]. These networks can suffer from a significant problem. When learning long-term

6
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Figure 2.4: Sigmoid Function

Figure 2.5: Tanh Function

Figure 2.6: RNN unfolded.

dependencies, as result of an unstable relationship between the parameters and the dynamics of

the RNN, a vanishing or exploding gradient can occur[BSF94].
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2.3.2.1 Long short-term memory

Long short-term memory (LSTM), initially introduced by [HS97] and improved further by other

people, is a special kind of RNN designed to fight the long-term dependency problem. This

architecture is able to preserve the error backpropagated through time and layers, allowing it to

learn over many time steps.[GSK+15] This architecture introduces a new structure, and one variant

can be seen in the Figure 2.7.

Figure 2.7: LSTM block.[GSK+15]

This is an improved version of the one proposed by [HS97]. The most relevant new features

are:

• Forget Gate: ability to reset its own state giving the ability to forget past knowledge[GSC00].

• Peephole Connections: ability for the gates to look at the cell state in order to learn precise

timings[GS00].

2.4 Decision Trees

The process which allows to create general models from analyzing a set of instances to classifiy

objects is called inductive inference[PKSR02]. Decision trees are one of the most used methods

for this process[Mit06]. Given a set of instances, where each one has a group of features and

corresponding labels, a decision tree algorithm generates a sequential model composed by a se-

quence of tests, where the result will decide what branch of the tree to follow as in the Figure 2.8

[Kot13][Sal94].

There are two main types of decision trees:

8
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Figure 2.8: Simple decision tree

• Classification Tree: the output is a class.

• Regression Tree: the output is a real number.

Famous examples of decision trees are:

• ID.3[Qui86]: Iterative Dichotomiser 3, classification algorithm.

• C4.5[Qui93]: extension of ID3 algorithm, also classification algorithm.

• CART[BFOS84]: Classification And Regression Tree.

• Random Forests[Ho95][Bre01]: both classification and regression algorithm.

For this thesis, only C4.5 and Random Forests were considered.

2.4.1 ID3

In order to generate a decision tree we need to choose which attribute to test at each node of

the tree. The classification algorithm ID3[Qui86], originally developed by J. R. Quinlan, uses a

statistical property called information gain which is obtained from a measure called entropy.

• Entropy:

Entropy(S) = ∑
c
i=1−pilog2(pi)

Entropy(S,A) = ∑c∈A P(c)E(c)

• Information Gain:

Gain(S,A) = Entropy(S)−Entropy(S,A)

Steps:

• For the set S, calculate the entropy of every attribute.

9
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• The attribute with largest information gain becomes the decision node.

• If a branch has an entropy bigger than 0, it needs to be split further, otherwise it becomes a

leaf node.

• Recursively apply the algorithm on the non-leaf branches with the remaining attributes.

2.4.2 C4.5

C4.5[Qui93] is a classification algorithm developed by J. R. Quinlan, as an extension to his earlier

work on ID3[Qui86]. Some improvements over his previous algorithm are:

• Capable of handling continuous values.

• C4.5 allows building a decision tree with unknown attribute values in their instances, by

evaluating the gain only with the known values.

• After the tree creation, the algorithm tries to replace branches with leaf nodes, if it results in

a lower expected error rate.

• After a decision tree is generated, it is possible to classify new instances with unknown

attribute values by estimating probabilities of the multiple outcomes.

2.4.3 Random Forests

Random Forests[Ho95][Bre01] is an ensemble learning method for classification and regression.

An ensemble is often more accurate than the single classifiers composing the ensemble[MO11].

This algorithm is characterized by the following steps:

• N subsets are sampled from the initial set S randomly with replacement, creating what it is

called bootstrap samples[BB96]. This process is called bagging.

• N trees are created from the bootstraped samples..

– During creation, at each node m features are selected at random from all the features.

– The feature which provides the best split shall split the node.

When the forest is complete and a new instance appears, the prediction depends on what type

of problem we are dealing with:

• Classification: every tree gives its prediction and the chosen one is found by a voting

majority.

• Regression: an average or weighted average of all the predictions.

10
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2.5 Genetic Algorithms

Genetic Algorithms first developed by John H. Holland[Hol75], weren’t developed to solve spe-

cific problems but to import the mechanisms of natural adaptation into computer systems[Mit96].

Nowadays, genetic algorithms are used as probabilistic search procedures which work on large

spaces[GH88].

According to [RN09], a genetic algorithm:

[...] starts with a set of one or more individuals and applies selection and reproduc-

tion operators to "evolve" an individual that is successful, as measured by a fitness

function.

[RN09] also states that before we apply this algorithm to a problem four questions need to be

answered first:

• Q1: What is the fitness function?

• Q2: How is an individual represented?

• Q3: How are individuals selected?

• Q4: How do individuals reproduce?

2.5.1 Fitness function

The fitness function depending on the problem, takes an individual as input and returns a real

number.

2.5.2 Representation and Initialization

The set of parameters of an individual are called chromosome[Mit96] and they are typically repre-

sented by strings of bits. They are discretized on some power of 2, resulting in a specific number

of bits per parameter[Whi94]. When a parameter is continuous it is still possible to discretized

it, given that the chosen intervals give a level of precision to the output[Whi94]. After having an

established representation, it is important to have a good initial population because of its impactful

role, both in finding a quality solution and in the time taken to accomplish it[KM14]. However,

most of the cases it is generated randomly, unless there is some knowledge about the solution.

2.5.3 Selection

Given a certain population, it is necessary to select individuals to reproduce and create new off-

spring. As a general strategy, it is attributed a fitness value to each individual, and the most fit

individual has the most probability of survival and reproduction[LL11]. There are many selection

methods, and just a few relevant ones to this thesis will be introduced.

11
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2.5.3.1 Roulette-wheel selection

In this method, individuals are assigned sectors of the roulette wheel proportionally to their fitness,

making the random selection biased towards fitter individuals[Jon90]

Figure 2.9: Roulette wheel parent selection, figure from[Jon90]

The selection probability of the i-th individual with a fitness value of wi is given by:

pi =
wi

∑
N
i=1 wi

(i = 1,2, ...,N) (2.3)

2.5.3.2 Rank Selection

In the previous method, if an individual has a fitness value too different from the rest of the

population, it will overwhelm the chances of getting selected over the rest. In a way to to prevent

that, the rank selection method was introduced. This method sorts all the individuals from best

to worst according to their fitness level. These ranks will correspond to their new fitness values,

where fitness with value 1 is the worst and the best will have a fitness value equal to the number

of individuals in the population.

pi =
rank(i)

∑
N
i=1 wi

(i = 1,2, ...,N) (2.4)

2.5.3.3 Elitism Selection

When building a new population this type of selection allows the best individuals from the old

population to survive and join the new population without any modification.

2.5.4 Reproduction

After selecting all the individuals, it is time to generate a new population. The chosen chromo-

somes are randomly paired for reproduction, which is accomplished by two processes[RN09]:

• Cross-over: For each pair of individuals, a cross-over point is randomly chosen. One of the

offsprings shall have the first genes (or bits) until the cross-over point from one parent and

12
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the last genes from the cross-over point from the other parent. The second offspring shall

have the opposite. This process is represented in the Figure 2.10 with the red line indicating

the cross-over point.

Figure 2.10: Cross-over.

• Mutation.: With an inpendent probability it is possible for each gene from the offspring to

be flipped, as in the Figure 2.11.

Figure 2.11: Mutation.
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Chapter 3

Methods

In this chapter, it is presented the methodology and planning.

However, before we got into the methods themselves, we had to define what we required so

we could solve the problem.

Ultimately, there was a need for data on a great amount of files. For each file we needed

different classifications assigned by different classifiers in seperate points in time, as well as, its

attributes and final classification.

The table 3.1 and 3.2 are a representation of what we wanted our data to be.

Table 3.1: File classifications in time.

File Classifier Classification Date
1 C_1 None 2016-01-09 15:19:31
1 C_1 Trojan.Win.123 2016-01-19 15:19:31
1 C_2 Trojan.HON 2016-01-09 15:19:31
1 C_2 Win.Trojan123 2016-01-19 15:19:31
1 C_3 VirusOSX.Generic 2016-01-09 15:19:31
1 C_3 None 2016-01-19 15:19:31

Table 3.2: File attributes.

File Type Size Final Classification
1 exe 9999 Trojan123

0

3.1 Data Acquisition

The first action towards solving the problem was acquiring the data needed for preprocessing and

analyse:

• File size: size of the file in bytes

15
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• File type: type of the file, according to its extension

• File source: from where the file originated

• Classifier

• Classification

• Date of classification

• Final Classification. . .

However, to get this kind of data we needed to go through multiple preliminary steps.

The Figure 3.1 shows sequentially from (a) to (e), the stages required to obtain the data in

the format above. The files used for this thesis came from different external sources into our

environment. An explanation of the flow of the Figure 3.1 is given:

1. (a) represents multiple databases which save the details of the new incoming files to be

analysed. New files come every second. Databases already existing prior to the dissertation.

Figure 3.2.

2. Machine (b) monitors regularly the databases in (a) for new incoming files and saves their

identifier to the database (c). The monitoring stops when the count of files reaches 100000.

3. Database (c) saves the files’ identifier. It also stores its entry date, as well as a state. This

state helps in figuring out if it is time for the file to be classified again. A file has to be

classified again if: current_date >= entrydate+ days(2state) The max value of state is 4

and is incremented each time a file’s details is given. Figure 3.3.

4. (d): Multiple parallel machines with 12 different classifiers which regularly check (c) for

files eligible to be classified.After each classifier has a result, it gets saved in the database (e)

(Figure 3.4) with the desired format, ready to be preprocessed and analysed by the multiple

machine learning algorithms in (f).

3.2 Data Preprocessing

After acquiring all the necessary data, the next step is to transform the data so each of our algo-

rithms can read it.

The first problem is shared by all algorithms and it regards the different classifiers results.

Each classifier gives a result in a different naming standard. For example, classifier A might call a

trojan from the family DOG "TROJ.DOG", while classifier B might call it "dog_trojan". Although

they mean the same, their representation also has to be the same. Looking over the classifications

given, it is possible to notice that most possess: type, platform and one or two families. These

features can be extracted using regular expressions for each different classifier.

Other problems are specific to one or more algorithms.
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Figure 3.1: General and simplified version of the data aquiring process.
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Figure 3.2: Model from (a) databases.

Figure 3.3: Model from (c) databases.

3.2.1 Decision Trees and MLP

Something that all these algorithms lack in common is the core ability to analyse data over time.

One way to overcome this is by manipulating the data and flatten it. Using the tables 3.1 and 3.2

as an example, a sample after getting flattened would be in the following format ready for the

decision trees(CNTSZ = Classifier N Time Step Z):

Table 3.3: File classifications in time.

Type Source Size C1TS1 C1TS2
exe source_sky 9999 None Trojan.Win.123

C2TS1 C2TS2 C3TS1 C3TS2 Final Classification
Trojan.HON Win.Trojan123 VirusOSX.Generic None Trojan123

3.2.2 Neural Networks

Only categorical values will be considered.

In order to feed a neural network categorical values, as the ones we are working with, these

need to be encoded as numerical variables. One typical method is to use one hot encoding as in

Table 3.4.

Another problem is the unexistence of some values1 which were represented by the number of

0 equal to the size of each encoded categorical variable. An unknown value in the table 3.4 would

1For example a classifier failed to give a result from a file in certain day.
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Figure 3.4: Model from (e) database.

Table 3.4: One Hot Encoding.

Categorical value Encoded
source_sky 0001
Virus 0010
Classifier1 0100
Trojan 1000

be represented as 0000.

3.3 Models

In this section, it will be introduced what kind of model specifications were chosen.
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3.3.1 Decision Trees

For each algorithm, there are some parameters that can tuned in order to change the result accuracy

and loss.

1. C4.5:

(a) Pruning confidence threshold: 0.25

(b) Number of instances per leaf: 2 (default)

3.3.2 Neural Networks

Both MLP and LSTM will have access to a training set and a testing set to find out how well they

can perform on an independent set of data. Also, both architectures have a lot of parameters that

need to be defined:

• Number of hidden Layers

• Number of nodes per layer

• Dropout[SHK+14]

• Batch size

• Activation

• Learning rate

• Decay[Kar16b]

Finding the optimal combination of parameters can become a very difficult task, and for this

reason, a genetic algorithm was designed to help finding the best values for each parameter.

The parameter domain was defined in the following manner:

Table 3.5: Genome’s domains

Number of hidden Layers Number of nodes per layer Dropout
[1,3] [0,511] [0.3,0.8]
Batch Size Activation Learning Rate Decay
{8,16,32,64,128,256} {’tanh’,’sigmoid’} [10−1,10−4] [10−3,10−4]

The fitness value is influenced by both the loss of the training set, as well as, the number of

hidden layers in the architecture. f itness_value = rre∗ serr+ rrs∗ ssize

• rre: reversed rank error

• serr: error scaling

• rrs: reversed rank size
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• ssize: size scaling

Both scalings were defined to 0.5. The selection method decided is a hybrid of ranked and elitism

selection. After a rank selection is made and their new population is generated and their fitness

function calculated, the top 5% of the old population replace the worst 5% of the current one if

they are better. And then, a new rank selection process is made. The initial population is 6 with

a number of 100 generations. The mutation rate is 0.03, and a cross rate of 0.5 was also added to

increase randomness.
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Chapter 4

Implementation

In this chapter, it is presented the most relevant implementations, as well as, the equipment, tools

and libraries used.

4.1 Equipment, tools and libraries

The programming language used for this dissertation was Python 2.7 under the Anaconda1 plat-

form on Windows 10. This platform is a high performance distribution of Python designed to help

with data science projects. It was used in all stages: data acquisition, data preprocessing, model

creation and analysis.

Weka2 was the tool chosen to analyse the data with the decision trees algorithms: C4.5 and

Random Forest. Weka is a collection of machine learning algorithms for data mining tasks devel-

oped in Java. A python library called python-weka-wrapper3 was used to communicate with the

java virtual machine in order to use Weka functionalities.

The development of MLP4 and LSTM5 were made possible through a minimalist and highly

modular neural network library called Keras6. This library runs on top of TensorFlow or Theano7,

libraries designed tp perform mathematical operations involving multi-dimensional arrays effi-

ciently. Theano was the only option available, because TensorFlow is not available for Windows.

Keras supports CUDA for efficient computations when using an NVIDIA graphic card. The one

used was GeForce GTX 9608.

1https://www.continuum.io/
2http://www.cs.waikato.ac.nz/ml/weka/
3https://pypi.python.org/pypi/python-weka-wrapper
4Multi Layer Perceptron
5Long Short Term Memory
6https://github.com/tensorflow/tensorflow
7https://github.com/Theano/Theano
8http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-960/specifications
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4.2 Data Preprocessing

In the data preprocessing stage the most relevant process is the one-hot-encoding of the categorical

values which used the pandas9 library.

An example of its usage:

1 import pandas as pd

2 (...)

3 encoded = pd.get_dummies(list_classifications)

4 (...)

5 type = encoded[’trojan’]

Listing 4.1: One-hot-encoding

The function get_dummies() returns a dictionary where the categorical value is a key to an array

with size equal to the size of list_classifications, similar to the Table 3.4.

4.3 Models

In this section, it is presented the most relevant implementations features of the models.

4.3.1 Decision Trees: J48 and Random Forest

Both decision trees share the same implementation, because both use the same functions used by

python-weka-wrapper, only differing in the parameters called:

The dataset file is a csv file where each line is in the format given by the Table 3.3.

1 evaluate_cross("j48","weka.classifiers.trees.J48",["-C", "0.25","-M","2"],

dataset_path,10,verbose)

Listing 4.2: C4.5

1 evaluate_cross("randomforest","weka.classifiers.trees.RandomForest",["-I", "50","-K

","0","-S","1"],dataset_path,10,verbose)

Listing 4.3: Random Forest

The function evaluate_cross() is defined by:

1 import weka.core.jvm as jvm

2 from weka.core.converters import Loader

9http://pandas.pydata.org/
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3 from weka.classifiers import Classifier, Evaluation

4 from weka.core.classes import Random

5 import weka.core.serialization as serialization

6

7 def evaluate_cross(type_,classname_,options_,dataset_path,num,verbose=None):

8 try:

9 if verbose:

10 print "\n########\nInitiating "+type_+" classifier:"

11 jvm.start(max_heap_size="4096m")

12 data = dataset_loader(dataset_path,verbose)

13 cls = Classifier(classname=classname_,)

14 cls.options = options_

15 evaluation = Evaluation(data)

16 evaluation.crossvalidate_model(cls, data, num, Random(412))

17 if verbose:

18 print(evaluation.summary())

19 jvm.stop()

20 except:

21 print sys.exc_info()

Listing 4.4: evaluate_cross

4.3.2 Neural Networks

4.3.2.1 Input shape

Each architecture requires a different input data shape.

• LSTM:(number_of_samples,timesteps,timestep_dimension)

• MLP:(number_of_samples,dimension)

4.3.2.2 Genetic Algorithm for Hyperparameter Search

The search for the optimal parameteres was executed using the following genetic algorithm:

1 population = generate_initial_population(POPULATION_SIZE)

2 population = simulate(population)

3 pop_size = len(population)

4 old = population

5 for j in xrange(NUM_GENERATIONS):

6 new_population = []

7 population = sort_rank(population)

8 for i in xrange(pop_size/2):

9 ind1, ind2 = select(population)

10 new1, new2 = cross_mutate_genes(population[ind1][GENOME],population[ind2][

GENOME])

11 new_population.append(new1)
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12 new_population.append(new2)

13 new_population = simulate(new_population)

14 new_population = sort_rank(new_population)

15 new_population = (sort_rank(new_population+population[-int(elite_rate*len(

population)+0.5):]))[-len(population):]

16 population = new_population

17 old = population

18 elite = population[-int(0.05*len(population)+0.5):]

The function simulates() runs the neural network with the defined parameters of the individual

genome returning the loss of the training set:

1 def simulate(population):

2 population_ = []

3 idx = 0

4 for individual in population:

5 q = Queue()

6 p = Process(target=golive, args=(individual,q))

7 p.start()

8 p.join()

9 val_loss = q.get()

10 population_.append([individual,val_loss,gene_val(individual[0]),0,0,0])

11 return population_

4.3.2.3 Model Creation

The following code is responsible for creating the LSTM mode:

1 from keras.models import Sequential

2 from keras.layers.core import Activation, Dense, Dropout

3 from keras.optimizers import SGD

4 from keras.layers.recurrent import LSTM

5

6 def run(output_dim,input_shape,num_layers,hidden_sizes,dropout,batch_size_,

activation_,lr_,decay_,ftrain,ftest,datapath,num_samples):

7

8 f = h5py.File(datapath, "r")

9 rsequences = True

10 if num_layers == 1:

11 rsequences = False

12

13 model = Sequential()

14 model.add(LSTM(hidden_sizes[0],input_shape=input_shape, init=’glorot_uniform’,

inner_init=’orthogonal’,

15 activation=activation_, inner_activation=’hard_sigmoid’,

16 return_sequences=rsequences))
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17 model.add(Dropout(dropout))

18 for i in xrange(num_layers-1):

19 if i+2 == num_layers:

20 rsequences = False

21 model.add(LSTM(hidden_sizes[i+1],return_sequences=rsequences))

22 model.add(Dropout(dropout))

23 model.add(Dense(output_dim))

24 model.add(Activation(’softmax’))

The MLP model is coded the same way, but instead of: model.add(LSTM(...) it becomes model.add(Dense(...).

4.3.2.4 Model compilation and training

Both models have the same compilation and training process. This block compiles the network

with the chosen loss function and optimizer function.

1 sgd = SGD(lr=lr_, decay=decay_, momentum=0.9, nesterov=True)

2 model.compile(loss=’categorical_crossentropy’, optimizer=sgd, metrics=["

accuracy"])

The following block sets a splitting size of the batches. Each time the model trains a new

batch it evaluates the training set and calculates its loss. If it hasn’t improved for 2 batches, it

stops earlier and returns the current loss function. It trains all batches nb_epoch times.

1 test_samples = int(num_samples * 0.1)

2 num_samples = num_samples - test_samples

3 split = batch_size_

4

5 early_stop = 0

6 val_loss = 1000

7

8 for e in range(nb_epoch):

9 print("\n#######\n#######\nEpoch %d Early_stop %d" % (e ,early_stop))

10 start = 0

11 end = 0

12 for i in range(int(num_samples/split)):

13

14 end = end + split

15 if end > num_samples:

16 end = num_samples

17 if start >= end:

18 break

19

20 print str(start)+"--"+str(end)+"/"+str(num_samples)

21 sc = model.fit(f[’arr’][start:end], f[’sol’][start:end],

22 batch_size=batch_size_,

27



Implementation

23 nb_epoch=1,

24 shuffle=True)

25 end += 1

26 start = end

27

28 score = model.evaluate(f[’arr’][num_samples+1:], f[’sol’][num_samples+1:],

batch_size=batch_size_, verbose=1)

29

30 if score[0] < val_loss:

31 val_loss = score[0]

32 early_stop = 0

33 else:

34 early_stop += 1

35 if early_stop == 2:

36 print("Val_loss didn’t improve for 5 times, leaving.")

37 return score[0]

38 return val_loss
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Chapter 5

Results and Discussion

In this chapter an evaluation of the work done and results shall be presented.

5.1 Dataset

A dataset file was collected in the end of the 16 days (2state), but also in a random day inbetween.

The Figure 5.1 has a chart representing how many times a classifier (identifiers from 115 to

126) changed its classificaton for a given file.

Figure 5.1: Number of classification modifications per classifier.
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The old dataset had a total of 4625656 instances, while the current dataset had a total of

5308415 instances.

Looking at the total number of instances, the number of modifications is quite underwhelming.

This means that in many cases a classification did not vary.

One explanation might be the short time frame of 16 days.

5.2 Genetic Algorithm and Neural Networks

5.2.1 MLP

When applying the genetic algorithm, the most fit individual was the one with the following pa-

rameters:

• Number of hidden layers: 1

• Number of nodes layers: 973

• Dropout: 0.6

• Batch Size: 64

• Activation: tahn

• Learning rate: 0.002043652998

• Decay: 5.54231178799e-06

When running the testing set, the network was able to have a loss of 14% with accuracy of

91%. Only one epoch was needed.

5.2.2 LSTM

When applying the genetic algorithm, the most fit individual was the one with the following pa-

rameters:

• Number of hidden layers: 1

• Number of nodes layers: 625

• Dropout: 0.5

• Batch Size: 64

• Activation: sigmoid

• Learning rate: 0.014042720195

• Decay: 3.43065325719e-06

When running the testing set, the network was able to have a loss of 9% with accuracy of

98%. Only one epoch was needed.
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5.3 Comparisons

Table 5.1: Loss and accuracy results from the algorithms.

Algorithm Accuracy Loss
C4.5 95% 29%
Random Forest 94% 26%
MLP 91% 14%
LSTM 98% 9%

Looking at the Table 5.1, LSTM is clearly the better algorithm with an accuracy of 98% and

only 9%. Both decision trees algorithms showed a similar result. And MLP had the worst result.

The Figure 5.2 and 5.3 show both the accuracy and loss evolution along with the batches from

LSTM. Until approximately the batch 1025, both functions present an apparent random behaviour

and then convert very rapidly.

Figure 5.2: Accuracy function over batches (LSTM)

These overall results were better than expected across all the architectures. One explanation

can be found in the Figure 5.1. Because there aren’t many modifications, the need for analysis

over time is reduced improving the loss and accuracy values of every algorithm.

Because there is still a relevant number of classification modifications over time, LSTM com-

prove that its capabilities for this type of data makes it better than the other architectures where

they don’t have the features to analyse time series data, needing further data preprocessing.
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Figure 5.3: Loss function over batches(LSTM)
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Chapter 6

Conclusion

6.1 Goals

All goals proposed in the introduction of this thesis were accomplished.

1. Is it possible to predict a classification based on past variations of classifications across

different classifiers?

All four machine learning methods C4.5, Random Forest, Multi-Layer Perceptron and Long

short term memory, were able to predict a classification with great accuracy: 95%, 94%,

91%, 98% respectively. Furthermore, it shows that algorithms (C4.5, Random Forest and

MLP) not ready to analyse time series data, are capable of that as long as data is modified

for that effect. Even though, an architecture specified for this task is still better.

2. Is it possible to improve certain algorithms by searching for optimal parameters?

Yes. Through genetic algorithms we were able to find the optimal structure and parameters

for both neural networks, MLP and LSTM.

3. What algorithm can best predict the classification?

The best algorithm was LSTM with an accuracy of 98% and loss of 9%.

6.2 Future Work

Although the results are good and proved it is possible to predict a classification based on past

classifications by multiple classifiers, further research is needed. The classification variations

were low and the time frame might be too low as well.

Another interesting possibility is to include some technical details of the files (for example

function calls sequences) into the input data, because this dissertation was mostly over statistical

data of the multiple classifiers.
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